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1 Complex Differentiation

The goal of this course is to develop the surprisingly rich theory of complex valued functions
of one complex variable and the theory of integrating such functions along complex paths. The
motivations for investigating such topics are complex polynomials of interest in geometry and
number theory.

We will also look at functions defined by power series such as the map from s — > ni = ((s)
will define a complex differentiable function for Re(s) > 1. There is also a connection to harmonic
functions which is developed further in Analysis of Functions. We can also use complex methods
to solve classical integrals or and differential equations which is developed more in IB Complex
Methods.

For this course we will use z € C and 2 = Re(z),y = Im(z). We will also use 6 for the argument
of z, arg(z) which is well-defined up to adding 27Z. We will use the principal argument Arg(z) €
(=, 7).

Definition. (Open disc) An open disc or open ball centred at a with radius r in C is the
set {ze€C||z—a|<r}=B(a,r) =D(a,r).

Remark. We will use D = B(0,1) and B(a,7) ={2 € C| |z —a| <r}.
We use C* to denote C\ {0}.

Recall that a set U C C is open if it contains an open disc about each of its points.

Definition. (Path) A path in U C C is a continuous map 7 : [a,b] — U.

Definition. (Path-connected) We say that U C C is path-connected if for all z,y € U
there exists a path 7 : [0,1] — U such that v(0) =z and v(1) = y.

Definition. (Domain) A domain in C is a non-empty path-connected subset of C.

Definition. (Closed path) If «y is a path and ~y(a) = (b) then we say that + is a closed
path.

Definition. (C' path) We say a path is C' if it is continuously differentiable. We say
a path is piecewise C* if it has finitely many non-differentiable points but still globally
continuous.

Definition. (Simple path) A path is simple if it is injective except perhaps at the end-
points.



Definition. Let U C C be open.
(i) We say that f: U — C is differentiable at w € U if

o £2) = W)
fiw) = lim ——"—"
exists.
(i) We say that f is holomorphic at w € U if 3¢ > 0 such that f is differentiable on
B(w,e) CU.

(iii) If f is holomorphic everywhere, we say f is entire.

Remark. Some authors use analytic for holomorphic.

Remark. The usual rules for differenting sums and products and the inverse of a function (when
it exists) apply exactly like we say in TA Analysis I with exactly the same proof.

Any f : U — C can be written as f(z) = f(z + iy) = u(x,y) + iv(z,y) where u,v : U — R are
the real and imaginary parts of f.

Recall that u : U — R is differentiable at (c,d) € U with derivative Du |(.,qy= (A, 1) if and only

if
u(z,y) —u(e,d) — (\Mz —¢) + p(y — d))
V(=) + (y—d)?

—0

as (z,y) — (¢, d).

Proposition. (Cauchy-Riemann equations) Let f : U — C be defined on an open set U
and write f = u+ iv, then f is differentiable t w = ¢ +4d € U with f'(w) = p+ iq if and
only if u and w are both differentiable at (¢,d) and u, = vy, = p and —u, = v, = ¢ at
(¢,d). Then f'(w) = ug(e,d) + ivg(c,d).

Proof. f is differentiable at w with derivative p + iq if and only if

o 1) = (@) = (= w)(p + i)

z—w Z — W

=0

One can check that lim,_,, % = 0 if and only if lim,_,, % =0 and (p+ig)(z —w) =

p(z —c) — q(y — d) + i(qg(x — ¢) + p(y — d)) so using these and taking real and imaginary parts
we get that

u(z,y) —u(e,d) — (p(z — ¢) — q(y — d))

im =0
(@,y)=(c,d) V(@ —c)2+ (y—c)?

for the real part. And

v(z,y) —v(e,d) — (g(z = c) +ply — d))

lim =0
(@,y) = (c,d) V(i —c)2+ (y —c)?

for the imaginary part. This is equivalent to saying that u is differentiable with Du | (. 4y= (p, —q)
and v is differentiable with Dv | 4y= (¢, ).

Remark. Let’s make some remarks about the Cauchy-Riemann equations.



(i) If f = w+iv and u, = v, and uy, = —v, at a point w we cannot conclude that f is
differentiable at w (Example Sheet 1).

(ii) If the partial derivatives ug, uy, vy, vy exist and are continuous in an open neighbourhood
of w then the Cauchy-Riemann equations holding does imply complex differentiability.

Let’s see some examples.
(i) Polynomials are sums and products of the identity function, hence they are entire.

(ii) If P and @ are polynomials, and U C C\ {z | Q(z) = 0} then % is differentiable on U.
These are called rational functions.

(iii) If f(z) = |z|, this is not differentiable anywhere in C. f = u 4 v with u = /22 4+ y2 and
v=0.If (z,y) # (0,0) then

T Y
Uy = ——— Uy =

/22 42 Y /22 + 42
So the Cauchy-Riemann equations do not hold, and if (z,y) = (0,0) we know that this

isn’t even differentiable in the real case, hence it’s also not differentiable in the complex
case. So f isn’t differentiable anywhere.

Remark. Later we’ll see that if f is holomorphic on U, then f’ is also holomorphic on U. Then
from the Cauchy-Riemann equations, we can see that f is harmonic. Conversely we can later
see that every harmonic function on an open set in R? is locally Re(f) for some holomorphic
function f.

1.1 Conformal maps

Proposition. Let U C C be a domain and suppose that f : U — C is holomorphic and
f'(2) =0 on U. Then f is constant.

Proof. We will without proof the following elementary topological fact.
Lemma. If U is a domain and v : [0,1] — U is a path with 7(0) = a and v(1) = b. Then

there is another path % : [0,1] — U with (0) = a and §(1) = b where ¥ is composed of
finitely many segments, each parallel to the z or y axis, so 7 is piecewise-C'*.

Given this we know that u, = v, and u, = —v, hold. Since f’ is zero, all these partials vanish
on U. Now the usual mean value theorem shows that u,v are constant along the segments of 7.
So f(a) = f(b). O

Definition. (Conformal) If f is holomorphc at a point w and f/(w) # 0 we say that f is
conformal at w.

This is a geometric property of f.

Suppose that U is a domain and f : U — C is conformal at w. Let’s take 7; : (—¢,e) — U
such that 7;(0) = w, and ~,(0) # 0. So 7; have non-zero tangent vectors through w. The angle



between these vectors is arg(y1(0) — arg(+4(0)). But then
(f1)'(0) _ f'(w) _ %(0)

=1

(f72)'(0)  f'(w)  75(0)

and so the angle between fvy; and fv2 at f(w) the same as for 71 and 2. So conformal means
that f preserves angles.

Definition. (Conformal equivalence) If U,V are open in C and f : U — V is a holo-
morphic bijection which is everywhere conformal on U we say that f is a conformal
equivalence and U and V are conformally equivalent.

Remark. In this setting, if f is conformal, the inverse function theorem says that f is locally
invertible and that local inverse is complex differentiable. If f is a bijection is it globally invertible,
and hence the chain rule shows that f~! is conformal.

Let’s see some examples.
(i) A linear map f(z) = az + b with a # 0 is a conformal equivalence C — C.

(ii) f(z) = 2" takes {z |0 < Arg(z) < T} — {2 € C|Im(z) > 0} = H. This fails at the origin,
but if we consider the open sector and open upper half plane.

(iii) The exponential map, z — exp z = e%e?¥ sends verticle lines to circles with radius eRez,

(iv) z € H < =z is closer to i than to —i <~ jﬂ
2i

H — D. Moreover f'(z) = 7 is non-zero for z € H, so f is an conformal equivalence.

< 1. The Mobius map z — 2 takes

Recall that the Mobius group, M, is the group of mappings z — Zjig with ad —bc #0. A ¢ M

defines a conformal equivalence from C\ {f%} — C\ {%}, but it’s much better to think of it as
a conformal equivalence to the extended complex plane C,. Recall that Mobius maps are triply
transitive, so

(z — 21)(22 — 23)
(z — 23)(22 — 21)

z —

sends the triple (21, 29, 23) to (0,1, 00).

Recall further that Mobius maps send circlines to circlines (where a circline is a circle or a line
plus the point at infinity).

Suppose we have a sector bounded between lines L1, Lo. What are the images of a sector under a
Mobius map? This depends on if our Mobius map T is such that T!(c0) € Ly or T71(00) € Lo.
Any region formed by two non-pallel lines, a circle and a line, or two circles could be image under
a Mobius map.

1 _ z2+

The Joukowsky transform is the map sending z — 1 (2+21) = %t We can compute that
11

f'(2) = 3 — 5= and f is holomorphic except at 0 and is conformal except at 0 and +1. Take the
circle passing through —1 and —i not centred at the origin. Under the map f, creates a kink at
—1 since it’s not conformal, but the curve is nice everywhere else since it’s conformal on the rest
of the circle. The transformed curve resembles an aerofoil. The incompressible fluid equations,
V x v = 0,v = V¢ implies that V2¢ vanishes, so ¢ is harmonic. So ¢ is locally Re(f), with f
holomorphic. This is used to transfer questions about fluid flow about complicated shapes to the
much simplier circle.
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